Weyl–Titchmarsh Theory for Schrödinger Operators with Strongly Singular Potentials
نویسندگان
چکیده
We develop Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials such as perturbed spherical Schrödinger operators (also known as Bessel operators). It is known that in such situations one can still define a corresponding singular Weyl m-function and it was recently shown that there is also an associated spectral transformation. Here we will give a general criterion when the singular Weyl function can be analytically extended to the upper half plane. We will derive an integral representation for this singular Weyl function and give a criterion when it is a generalized Nevanlinna function. Moreover, we will show how essential supports for the Lebesgue decomposition of the spectral measure can be obtained from the boundary behavior of the singular Weyl function. Finally, we will prove a local Borg–Marchenko type uniqueness result. Our criteria will in particular cover the aforementioned case of perturbed spherical Schrödinger operators.
منابع مشابه
Commutation Methods for Schrödinger Operators with Strongly Singular Potentials
We explore the connections between singular Weyl–Titchmarsh theory and the single and double commutation methods. In particular, we compute the singular Weyl function of the commuted operators in terms of the original operator. We apply the results to spherical Schrödinger operators (also known as Bessel operators). We also investigate the connections with the generalized Bäcklund–Darboux trans...
متن کاملOn Spectral Theory for Schrödinger Operators with Strongly Singular Potentials Fritz Gesztesy and Maxim Zinchenko
We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2 × 2 matrix-valued Herglotz functions representing the associated Weyl–Titchma...
متن کاملOn Spectral Theory for Schrödinger Operators with Strongly Singular Potentials
We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2× 2 matrix-valued Herglotz functions representing the associated Weyl–Titchmar...
متن کاملOn the Singular Weyl–Titchmarsh Function of Perturbed Spherical Schrödinger Operators
We investigate the singular Weyl–Titchmarsh m-function of perturbed spherical Schrödinger operators (also known as Bessel operators) under the assumption that the perturbation q(x) satisfies xq(x) ∈ L(0, 1). We show existence plus detailed properties of a fundamental system of solutions which are entire with respect to the energy parameter. Based on this we show that the singular m-function bel...
متن کاملSingular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this ...
متن کامل